The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
With the drive to create a decentralized digital economy, Web 3.0 has become a cornerstone of digital transformation, developed on the basis of computing-force networking, distributed data storage, and blockchain. With the rapid realization of quantum devices, Web 3.0 is being developed in parallel with the deployment of quantum cloud computing and quantum Internet. In this regard, quantum computing first disrupts the original cryptographic systems that protect data security while reshaping modern cryptography with the advantages of quantum computing and communication. Therefore, in this paper, we introduce a quantum blockchain-driven Web 3.0 framework that provides information-theoretic security for decentralized data transferring and payment transactions. First, we present the framework of quantum blockchain-driven Web 3.0 with future-proof security during the transmission of data and transaction information. Next, we discuss the potential applications and challenges of implementing quantum blockchain in Web 3.0. Finally, we describe a use case for quantum non-fungible tokens (NFTs) and propose a quantum deep learning-based optimal auction for NFT trading to maximize the achievable revenue for sufficient liquidity in Web 3.0. In this way, the proposed framework can achieve proven security and sustainability for the next-generation decentralized digital society.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
尽管强化学习可以为复杂的任务取得令人印象深刻的结果,但学习的政策通常容易在下游任务中失败,甚至较小的模型不匹配或意外的扰动。最近的工作表明,具有不同行为特征的政策人群可以推广到具有各种差异的下游环境。但是,由于受过训练的政策的不受限制行为,这种政策在部署过程中的部署期间可能会导致灾难性损害。此外,培训不同的策略而不对行为进行调节的策略可能导致不足的政策,以推断出具有动态变化的广泛测试条件。在这项工作中,我们旨在根据行为模式的正规化培训各种政策。我们通过观察环境中的反向动态来激励我们的范式,并提出了通过调节行为进行调节的多样性(DIR)培训各种政策,以发现受益的概括的所需模式。对不同环境的各种变化的大量经验结果表明,我们的方法比其他多样性驱动的对应物取得了改进。
translated by 谷歌翻译
培训强大的政策对于现实世界中的政策部署至关重要,或者处理不同动态系统中未知动态不匹配。域随机化〜(DR)是一种简单而优雅的方法,可以训练保守的政策,以反对不同的动态系统,而无需有关目标系统参数的专家知识。但是,现有的作品表明,通过DR培训的政策往往保守过度保守,并且在目标领域的表现差。我们的关键见解是,具有不同参数的动态系统为策略提供了不同级别的难度,并且由于策略的发展,在系统中表现良好的难度正在不断变化。如果我们可以为该政策进行适当的困难来积极地对系统进行采样,它将稳定培训过程,并防止政策变得过于保守或过度优势。为了实现这一想法,我们引入了主动动力学偏好(ADP),从而量化了采样系统参数的信息性和密度。 ADP积极选择具有高信息性和低密度的系统参数。我们在四个机器人运动任务中验证我们的方法,并在训练环境和测试环境之间存在各种差异。广泛的结果表明,与几个基线相比,我们的方法对系统不一致具有较高的鲁棒性。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
线云虽然在先前的工作中受到评价不足,但与从多视图图像中提取的点云相比,可能对建筑物的结构信息进行了更紧凑的结构信息。在这项工作中,我们建议第一个处理用于构建线框抽象的线云的网络。该网络将线云作为输入,即从多视图图像提取的3D线段的非结构和无序集,并输出基础建筑物的3D线框,该建筑物由稀疏的3D连接组组成,由线段连接, 。我们观察到一个线斑块,即一组相邻的线段,编码足够的轮廓信息,以预测潜在连接的存在甚至3D位置,以及两个查询连接之间的连通性的可能性。因此,我们引入了两层线斑变压器,以从采样线贴片中提取连接和连接性,以形成3D构建线框模型。我们还介绍了带有地面3D线框的多视图图像的合成数据集。我们广泛证明,在多个基线建筑重建方法上,我们的重建3D线框模型可显着改善。
translated by 谷歌翻译
在受监督和无监督的设置的基于学习的多视图立体声(MV)中,已经看到了重大进展。为了结合其在准确性和完整性方面的优点,同时减少了对昂贵标签数据的需求,本文探讨了一种新型的基于学习的MVS问题的新型半监督设置,该设置只有MVS数据的一小部分与密集的深度地面真相相连。但是,由于方案和视图中灵活的设置的巨大变化,半监督的MVS问题(半MV)可能会破坏经典的半监督学习中的基本假设,该假设未标记的数据和标记的数据共享相同的标签空间和数据分布。为了解决这些问题,我们提出了一个新颖的半监督MVS框架,即SE-MVS。对于基本假设在MVS数据中起作用的简单情况,一致性正则化鼓励模型预测在原始样本和随机增强样品之间通过KL差异的限制保持一致。对于MVS数据中基本假设有冲突的进一步麻烦案例,我们提出了一种新型的样式一致性损失,以减轻分布差距引起的负面影响。未标记的样品的视觉样式被转移到标记的样品中以缩小差距,并且在原始标记的样品中使用标签进一步监督了生成样品的模型预测。 DTU,BlendenDMV,GTA-SFM和Tanks \&Temples数据集的实验结果显示了该方法的出色性能。在骨干网络中使用相同的设置,我们提出的SE-MV优于其完全监督和无监督的基线。
translated by 谷歌翻译
已经提出了各种归一化层来帮助培训神经网络。组归一化(GN)是在视觉识别任务中实现出色表现的有效和有吸引力的研究之一。尽管取得了巨大的成功,但GN仍然存在几个问题,可能会对神经网络培训产生负面影响。在本文中,我们介绍了一个分析框架,并讨论了GN在影响神经网络训练过程时的工作原理。从实验结果中,我们得出结论GN对批处理标准化(BN)的较低性能的真正原因:1)\ TextBf {不稳定的训练性能},2)\ TextBf {更敏感}对失真,无论是来自外部噪声还是扰动。通过正规化。此外,我们发现GN只能在某个特定时期内帮助神经网络培训,而BN可以帮助整个培训中的网络。为了解决这些问题,我们提出了一个新的归一化层,该层是通过合并BN的优势在GN顶部构建的。图像分类任务的实验结果表明,所提出的归一化层优于官方GN,以提高识别精度,无论批次大小如何,并稳定网络训练。
translated by 谷歌翻译
当相互作用数据稀缺时,深厚的增强学习(RL)算法遭受了严重的性能下降,这限制了其现实世界的应用。最近,视觉表示学习已被证明是有效的,并且有望提高RL样品效率。这些方法通常依靠对比度学习和数据扩展来训练状态预测的过渡模型,这与在RL中使用模型的方式不同 - 基于价值的计划。因此,学到的模型可能无法与环境保持良好状态并产生一致的价值预测,尤其是当国家过渡不是确定性的情况下。为了解决这个问题,我们提出了一种称为价值一致表示学习(VCR)的新颖方法,以学习与决策直接相关的表示形式。更具体地说,VCR训练一个模型,以预测基于当前的状态(也称为“想象的状态”)和一系列动作。 VCR没有将这个想象中的状态与环境返回的真实状态保持一致,而是在两个状态上应用$ q $ - 价值头,并获得了两个行动值分布。然后将距离计算并最小化以迫使想象的状态产生与真实状态相似的动作值预测。我们为离散和连续的动作空间开发了上述想法的两个实现。我们对Atari 100K和DeepMind Control Suite基准测试进行实验,以验证其提高样品效率的有效性。已经证明,我们的方法实现了无搜索RL算法的新最新性能。
translated by 谷歌翻译